DH | KeyPairGenerator |
BigInteger p
[read] - the prime modulus, p
BigInteger g
[read] - the base, g
BigInteger y
[read] - the public value, g^{x} mod p
BigInteger order
[optional, read] - the order of the subgroup generated
by g (see comment below)
BigInteger p
[read] - the prime, p
BigInteger g
[read] - the base, g
BigInteger x
[read] - the private value, x
BigInteger y
[read] - the public value, g^{x} mod p
BigInteger order
[optional, read] - the order of the subgroup generated
by g (see comment below)
order
parameter is present in the public key, then encryption
or key agreement will be done in the subgroup of the given order generated by g.
I.e. the random value k used to calculate g^{k} will be a
"short exponent" in the range [1, order]. Implementations MAY exclude 1 and order
from this range, if the definition of the encryption or key agreement algorithm
allows it (since they occur with negligable probability, this will not affect security).
order
MAY be present in the private key, but is not needed for private
key operations (since the private exponent x determines its own length).
order
, if present, should be at least 2^{160},
and preferably prime.
DSA | KeyPairGenerator |
BigInteger p
[read] - the prime modulus, p
BigInteger q
[read] - a prime factor of p-1, q
BigInteger g
[read] - h^{(p-1)/q} mod p,
where h is less than p-1 and g > 1
BigInteger y
[read] - g^{x} mod p
BigInteger p
[read] - the prime, p
BigInteger q
[read] - a prime factor of p-1, q
BigInteger g
[read] - h^{(p-1)/q} mod p,
where h is less than p-1 and g > 1
BigInteger x
[read] - the private value, < q
BigInteger y
[read] - g^{x} mod p
ECDH | KeyPairGenerator |
ECParameters params
[read] - the curve parameters and base point
ECPoint P
[read] - the public point
ECParameters params
[read] - the curve parameters and base point
ECPoint P
[read] - the public point
BigInteger x
[read] - the private value, x
ECDSA | KeyPairGenerator |
Output MUST be encoded as DER.
ElgamalSig | KeyPairGenerator |
BigInteger p
[read] - the prime modulus, p
BigInteger g
[read] - the base, g
BigInteger y
[read] - the public value, g^{x} mod p
BigInteger p
[read] - the prime, p
BigInteger g
[read] - the base, g
BigInteger x
[read] - the private value, x
BigInteger y
[read] - the public value, g^{x} mod p
RSA | KeyPairGenerator |
BigInteger modulus
[read] - the modulus, n
BigInteger publicExponent
[read] - the public exponent, e
BigInteger modulus
[read] - the modulus, n
BigInteger privateExponent
[read] - the private exponent, d
BigInteger primeP
[read] - one of the prime factors of the modulus, p
BigInteger primeQ
[read] - the other prime factor of the modulus, q
BigInteger primeExponentP
[read] - d mod (p-1)
BigInteger primeExponentQ
[read] - d mod (q-1)
BigInteger crtCoefficient
[read] - q^{-1} mod p
It does not matter which of p and q is larger.
Author: David Hopwood <david.hopwood@zetnet.co.uk> Current maintainer: David Hopwood <david.hopwood@zetnet.co.uk> Copyright © 1995-2001 The Cryptix Foundation Limited and David Hopwood. All rights reserved. Cryptix is a trademark of The Cryptix Foundation Limited. |